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1. Introduction 

Optical turbulence is an atmospheric effect that acts on the propagation of light waves.  It 
is brought about by fluctuations in the refractive index in air, i.e., air density, which 
affects the speed at which light wave fronts propagate.  Atmospheric refractions of 
electromagnetic energy can cause spatial and temporal (intensity) variations in 
transmitted signals [1-4].  In turn, these effects can significantly degrade (blur, shimmer, 
and distort) infrared images or increase transmission bit error rates in free-space laser and 
ground-to-satellite communication systems.  Hence, there is a growing need for 
increasingly accurate and reliable optical turbulence information. 

As an example, optical turbulence was studied intently during an experiment to establish 
the first known optical communication link using lasers (from a mountaintop 
observatory) to a low earth orbiting satellite [5].  The number of arc-seconds of beam 
wander due to boundary layer turbulence that affected the performance of their ground-
to-satellite optical uplink was found to be  (on average) 1.5 to 5.0.  This affected light 
deviations at their receiver in space of approximately 2.2 to 7.3 m.  Wilson et al. 
commented, “If left uncompensated (i.e., no adaptive beam steering techniques applied) 
these effects would cause fades and surges in the uplink signal, and result in high bit 
errors in the uplink communications data stream.” 

A quantitative measure of the intensity of optical turbulence is the refractive index 
structure parameter, Cn2, where averaged Cn2 is often determined as a function of local 
differences in temperature, moisture, and wind velocity at discrete points [6-8].  Hill [9] 
describes a useful expression for Cn2 in the form, 

 ( ) ( )[ ] 3
222 −+−= rrxnxnCn , (1) 

where n is the index of refraction in air, x is position, and | r | is an eddy length scale 
between the inner (dissipation) and outer (energy producing) turbulent scales [7, 10].  In 
this form, we see that Cn2 is a parameter related to the refractive index variance over the 
small increment of distance | r |. 

In the atmospheric surface layer, we generally observe values of Cn2 to range from about 
10–12 to 10–16 m–2/3 [11].  High values of Cn2, 10–13 m–2/3 or greater usually indicate a 
highly turbulent atmosphere and the potential for considerable visual blurring, e.g., the 
wavy lines and visual blurring one might encounter looking out over a hot paved road.  
We often experience this degree of turbulence close to the ground on clear days, under 
unstable (surface-heated, convective) conditions (Fig. 1).  In contrast, typical daytime 
high values of Cn2 over oceans may be about 10–14 m–2/3.  Alternately, lower values of 
Cn2, 10–16 to 10–15 m–2/3, indicate more adiabatic conditions (i.e., near-neutral 
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atmospheric stability), like that which occurs on windy or cloudy days (and nights) or 
during the transitional periods after sunrise or before sunset (Fig. 2).  One might consider 
such atmospheric optical turbulence negligible over shorter (≤ 2 km) optical paths 
although there could be other image-degrading effects due to aerosols, precipitation, fog, 
or smoke. 

 
Figure 1. Time series of optical turbulence (scintillometer) 
data collected at 2 m (a.g.l.) over a 450 m path under typical 
daytime, clear-sky, unstable atmospheric conditions [12]. 

 
Figure 2. Time series of optical turbulence (scintillometer) 
data collected over a 2.3 km elevated path.  The turbulence 
intensity is quite low for both daytime and nighttime. 
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The following paper focuses on optical turbulence (scintillometer) data collected from 
December 2004 through June 2005 at the Army Research Laboratory (ARL), 
Atmospheric Laser Optics Testbed (A_LOT) Facility [13].  The scintillometer at A_LOT 
(i.e., Scintec1 BLS900) is a remote-sensing instrument that measures optical turbulence 
intensity (Cn2) along a line-of-sight path established between a transmitter and a 
downrange receiver.  Scintillometers operate based on the principle that scintillations or 
light intensity variations occur as atmospheric density discontinuities create refraction 
effects in light propagating along a path [14].  The parameter Cn2 relates to the intensity 
of these refraction effects.  The average (mid-point) elevation for the scintillometer at 
A_LOT is approximately 40 m above ground level (a.g.l.).  The optical path traverses 
somewhat complex topography and energy budgets (e.g., an open sand lot, forests, local 
roads, and buildings) from the top of a tall water tower to the Intelligent Optics 
Laboratory (IOL) rooftop at ARL (Figs. 3 and 4).  About half of the optical path is 
located over a relatively closed and uniform forest stand (Fig. 4).  Naturally, varying 
wind flow patterns and microclimate along the optical path will affect the A_LOT 
measured data.  We hope to develop and test several new algorithms to represent these 
processes in future works. 

 
Figure 3.  A schematic of the ARL A_LOT optical path. 

 
Figure 4.  An aerial photo of the A_LOT propagation path (data from terrafly.com). 

                                                 
1 The use of commercial or company names with regard to electronic products does not constitute an 

endorsement by the U.S. Army. 
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Finally, a Davis Instruments1 Vantage ProTM Weather Station collects local meteorology 
data on a tripod at ~ 2 m above the IOL rooftop.  Measured meteorological data include 
mean temperature, wind speed (small 3-cup anemometer), barometric pressure, relative 
humidity, and rainfall amount.  Later on, we expect to integrate a single 3-axis ultrasonic 
anemometer (R. M.Young1 model 81000) along side the rooftop weather station.  We 
expect the ultrasonic micrometeorological sensor to provide quite a lot of useful data for 
optical turbulence characterization and modeling research, e.g., mean wind velocities and 
wind flow statistics, mean and fluctuating temperatures, and eddy correlation-derived 
heat flux and friction velocity. 

In Section 2, we present various examples of turbulence and local meteorology data 
collected at the ARL A_LOT facility.  Section 3 discusses possible topographic and 
meteorological influences on the A_LOT measured turbulence data.  In Section 4, we 
give a summary and identify several viable research areas (projects) that that focus on 
optical turbulence (Cn2) measurement, modeling, and analysis. 

 

2. Selected optical turbulence and local meteorology data 

Table 1 summarizes the general features of the optical turbulence (Cn2) and local 
meteorology data selected for eight case studies.  We chose the dates (from winter to 
summer) somewhat randomly.  The information in Table 1 indicates that the values of 
Cn2 measured over the A_LOT elevated path range from about 2.0 x 10–16 to 4.5 x 10–14 
m–2/3 for different meteorological conditions, i.e., for variable wind speeds, relative 
humidity, and mean temperature.  The maximum values for Cn2 appear to be about an 
order of magnitude lower (i.e., less intense) than turbulence data typically measured close 
to the ground.  This may be largely due to altitude dependence of the measured data (see 
Section 3).  Table 1 also provides information regarding the range of wind speeds and the 
level of humidity (if higher than normal).  Yet beyond this, we would like to know what 
correlations exist between turbulence (Cn2) intensity and wind speed.  This is a good 
topic for future investigation.  In addition, it would be interesting to explore the 
relationship between turbulence intensity and cloud cover (and relative humidity).   

                                                 
1 The use of commercial or company names with regard to electronic products does not constitute an 

endorsement by the U.S. Army. 
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Table 1.  Characterization of selected optical turbulence and local meteorology data. 

Date/Month/Year Turbulence (Cn2) Meteorology 

02 December 2004 
 

8.0 x 10-16 to 4.0 x 10-14 1.0-2.0 m/s wind speeds 

12 December 2004 7.0 x 10-16 to 1.5 x 10-14  
 

1.0-4.0 m/s wind speeds 

25 January 2005 1.0 x 10-15 to 4.5 x 10-14  
 

1.0-2.5 m/s wind speeds;  
Calm winds before/after sunrise 
 

25 March 2005 7.5 x 10-15 to 4.0 x 10-14  
 

1.0-2.5 m/s wind speeds (daytime); Calm 
winds (nighttime); High relative humidity 
 

25 April 2005 2.0 x 10-15 to 3.0 x 10-14

 
1.0-8.0 m/s wind speeds   
 

01 May 2005 3.0 x 10-16 to 4.5 x 10-14  
 

1.0-8.0 m/s wind speeds;   
High relative humidity (nighttime) 
  

12 June 2005 2.0 x 10-16 to 3.0 x 10-15

 
1.0-4.0 m/s wind speeds (daytime); Calm 
winds and high relative humidity (nighttime) 
before sunrise  
 

19 June 2005 1.0 x 10-15 to 4.0 x 10-14

 
1.0-6.0 m/s wind speeds 
 

Figure 5 presents the time series of Cn2 data collected on 02 December 2004.  It is 
interesting that the turbulence intensities recorded during the nighttime exceed those 
measured during the daytime.  In addition, the Cn2 data exhibit a distinct diurnal pattern, 
wherein local minima in the Cn2 data, which occur at or about the sunrise and sunset, 
border the daytime maximum.  This feature is typical of data shown in the literature [12, 
15-19].  To some extent, most of the A_LOT Cn2 data presented here show one or two 
local daytime maxima in turbulence intensity (even if no clear local minima at sunrise 
and sunset are present).  Figure 6 presents the temperature, relative humidity, and wind 
speed data for this case.  For reasons unknown, the data record is incomplete.  It is 
interesting, however, that the temperature steadily decreases (and the humidity increases) 
from ~ 0700 LT until the end of the data record at ~ 1400 LT.  These data indicate 
(possibly) the passage of a cold front.  At the same time, Fig. 6 shows that the nighttime 
winds were sporadic and light (i.e., 1.0 -2.0 m/s)  

Figure 7 presents the time series of Cn2 data collected on 12 December 2004.  Here, the 
turbulence intensities recorded during the nighttime were (on average) quite low (i.e., 1.5 
x 10–15 m–2/3).  These low turbulence conditions continued through the morning hours.  
From about 1000-1400 LT, however, Fig. 7 shows a daytime maximum in Cn2 (~ 1.0 x 
10–14 m–2/3).  Figure 8 presents the local meteorology data for this case.  The wind speeds 
were sporadic at about 1.5-2.0 m/s (on average).  From about 0900-1400 LT, the data 
show a slight increase in wind speed.  This appears to correspond to increased turbulence 
(Cn2) intensity at that time. 
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Figure 5.  Time series of optical turbulence (scintillometer) 
data collected over a 2.3 km elevated path on 02 December 
2004. 

 

 
Figure 6.  Time series of local meteorological data collected at ~ 2 m 
above the IOL rooftop on 02 December 2004. 
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Figure 7.  Same as FIG. 5 except on 12 December 2004. 

 

 
Figure 8.  Same as FIG. 6 except on 12 December 2004. 
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Figure 9 presents the time series of Cn2 data collected on 25 January 2005.  At first 
glance, the data record is quite noisy.  If we consider only the mean, however, a 
somewhat normal diurnal pattern is discernable.  The range of turbulence intensity 
(overall) for this case is very high (~ 6.0 x 10–15 to 3.0 x 10–14 m–2/3).  Figure 10 presents 
the temperature, relative humidity, and wind speed data for 25 January 2005.  Here again, 
the wind speeds (daytime and nighttime) were sporadic at about 1.0-2.5 m/s (on average).  
However, the data in Fig. 10 shows two periods of calm winds. 

 
Figure 9.  Same as FIG. 5 except on 25 January 2005. 

 
Figure 10.  Same as FIG. 6 except on 25 January 2005. 
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Figure 11 presents the time series of Cn2 data collected on 25 March 2005.  It is 
interesting that these Cn2 data show very little diurnal variability.  In addition, the 
average turbulence intensity for this case is quite high (~ 2.0 x 10–14 m–2/3).  Figure 12 
presents the local meteorology data for this case.  The daytime wind speeds were (on 
average) 1.0-2.0 m/s with mostly calm winds at night. 

 
Figure 11.  Same as FIG. 5 except on 25 March 2005. 

 
Figure 12.  Same as FIG. 6 except on 25 March 2005. 
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Figure 13 presents the time series of Cn2 data collected on 25 April 2005.  A few local 
minima and maxima are discernable.  The range of turbulence intensity for this case is 
comparatively high (~ 2.0 x 10–15 to 3.0 x 10–14 m–2/3).  Figure 14 presents the 
temperature, relative humidity, and wind speed data for 25 April 2005.  For reasons 
unknown, the data record is incomplete.  It is interesting, however, that the temperature 
steadily decreases (and the relative humidity increases) from 0800 LT until the end of the 
data record at 1200 LT.  Like the data shown in Fig. 6, this record also suggests a change 
in air mass (i.e., a cold front).  In contrast, though, the data in Fig. 14 show that the 
nighttime wind speeds were stronger (i.e., 3.0 -5.0 m/s). 

 
Figure 13.  Same as FIG. 5 except on 25 April 2005. 

 
Figure 14.  Same as FIG. 6 except on 25 April 2005. 
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Figure 15 presents the time series of Cn2 data collected on 01 May 2005.  These data 
show a few short intervals of high turbulence intensity (~3.0-4.0 x 10–14 m–2/3) at about 
1000 and 2230 LT.  The data also show a brief period of very low Cn2  
(~ 4.0 x 10–16 m–2/3) occurring just after 0300 LT.  Additionally, a two other minima (at 
about 0730 and 1930 LT) are apparent.  The average daytime turbulence intensity is 
about 1.0 x 10–14 m–2/3.  Figure 16 presents the local meteorology data for this case.  On 
average, the nighttime and daytime wind speeds were moderate (and sporadic), i.e., 2.0-
6.0 m/s.  Interestingly, Fig. 16 shows that (in the morning) there was an increase in wind 
speed, which appears to correspond to an increase in turbulence (Cn2) intensity at that 
time.  However, a period of high turbulence also occurs late at night when relatively calm 
winds (≤ 1.0 m/s) are present.  As mentioned above, this is an interesting topic for future 
research. 

 
Figure 15.  Same as FIG. 5 except on 01 May 2005. 
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Figure 16.  Same as FIG. 6 except on 01 May 2005. 

Figure 17 presents the time series of Cn2 data collected on 12 June 2005.  These Cn2 data 
show a clear daytime local maximum and two nighttime local minima.  In addition, the 
average turbulence intensity for this case is quite low (≤ 1.5 x 10–15 m–2/3).  Figure 18 
presents the temperature, relative humidity, and wind speed data for this case.  The 
nighttime relative humidity is very high and the wind speeds are calm before sunrise.  
After sunrise, the daytime wind speeds were about 2.0-4.0 m/s. 

Figure 19 presents the time series of Cn2 data collected on 19 June 2005.  Like the data 
shown in Fig. 5, these Cn2 data exhibit a distinct diurnal pattern, wherein local minima 
border the daytime maximum.  In contrast, however, the data in Fig. 19 show an 
additional minimum in Cn2 occurring at about 1500 LT.  Cloud cover may explain this 
brief period of low turbulence.  The meteorology data for this case (Fig. 20) tends to 
support to the claim, wherein temperatures decrease slightly (e.g., possibly due to clouds) 
from 1430-1600 LT.  Shortly afterward, the wind speeds increase from 2.0 to 4.0 m/s 
with wind gusts up to 6.0 m/s. 
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Figure 17.  Same as FIG. 5 except on 12 June 2005. 

 
Figure 18.  Same as FIG. 6 except on 12 June 2005. 
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Figure 19.  Same as FIG. 5 except on 19 June 2005. 

 

 
Figure 20.  Same as FIG. 6 except on 19 June 2005. 
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3. Topographic and meteorological influences 

The average height of the A_LOT optical path that extends from the water tower to the 
IOL rooftop is about 40 m above ground level (a.g.l.).  Certainly, changing topography 
and non-uniform meteorology conditions may influence the measured data.  In this 
section, we briefly discuss some possible effects. 

3.1 Altitude dependence 

Tatarski [7] suggested the following power-law exponent model to extrapolate vertical 
profile information from discrete estimates of Cn2 close to the ground, i.e.,   

 ( )
x

ref
refnn z

zCzC
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅= 22   , (2) 

where the power-law exponent is 34=x  for unstable atmospheric conditions and 32=x  
for stable or adiabatic (i.e., near-neutral) conditions.  For the A_LOT optical path, this 
corresponds to possible vertical scaling of 1.84% and 13.6% respectively, in comparison 
to data measured at 2 m (a.g.l.).  Wyngaard et al. [20] and others [21-24] investigated 
Tatarski’s power-law model using data collected during several outdoor field trials.  Ben-
Yosef et al. [22] for example, found Eq. (2) to be in good agreement (~ 84 % correlation, 
on average) with observed data for the range 10 < z ≤ 100 m, particularly for the 
convective (daytime) case. 

The literature shows additional Cn2 data collected along elevated paths [25-27].  Kohsiek 
[26], for example, presents Cn2 data collected during the winter at about 42 m (a.g.l.), 
which range from about 1.0-8.0 x 10–15 m–2/3 (Fig. 21).  These data also suggest that the 
values for Cn2 may be about an order of magnitude lower than turbulence data measured 
close to the ground.  Furthermore, it is interesting to note in Fig. 21 that the turbulence 
intensities recorded during the nighttime exceed those measured during the daytime (e.g., 
this is similar to the A_LOT data shown in Fig. 5).  Finally, a diurnal pattern is 
discernable in Fig. 21, wherein local minima border the daytime maximum, albeit the 
level of daytime turbulence here is quite low. 
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Figure 21.  Optical turbulence (scintillometer) data 
collected over a 400 m elevated path in the 
Netherlands on 15 February 2002 [26].  Note the 
high values of Cn2 at night. 

3.2 Energy budgets 

One-dimensional (1-D) computer models for path-averaged Cn2 have been developed via 
energy budget considerations, e.g., from computed net radiation, effective surface 
temperature, soil, sensible, and latent (moisture) heat fluxes [19, 28-30].  While 
calculations of this kind have been quite useful for uniform meteorology and turbulence 
conditions, we recognize that formulating improved models, which are at least two-
dimensional, will be advantageous to determine optical turbulence (Cn2) in small finite 
increments along more complicated lines-of-site.   

In any case, Fig. 22 shows an example 1-D (energy budget model) calculation of path-
averaged Cn2 compared to measured A_LOT scintillometer data.  Overall, the agreement 
is satisfactory.  However, several underlying assumptions are associated with the model 
output.  For example, we assume the surface roughness length is large (e.g., z0 = 1.4 m) 
and the wind speeds are not less than 4.0 m/s (daytime and nighttime).  These 
assumptions are made because of several known difficulties in the application of 
traditional similarity theory [30] for calculating turbulence structure from micro-
meteorological data, especially for the stable case and as local ∆T temperature 
differences become small [18, 31, 32].  As an example, Tunick [31] found that the 
roughness height and reference level wind speeds at night need to be large enough to 
affect values for the similarity scaling length of  L = 13 m or more, otherwise, the model 
breaks down and the computation is not viable.  
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A curious result in Fig. 22 relates to the prediction of ‘low’ turbulence after sunrise and 
before sunset.  The energy budget model computes the daily minima in Cn2 about 1.0 
hour later than the scintillometer data in the morning and about 1.0 hour earlier in the 
afternoon.  In general, local minima in Cn2 occur as ∆T temperature (and humidity) 
differences become small.  Here, the scintillometer data and model appear to disagree 
when (i.e., at what time) surface heating overturns the nighttime stable inversion (and 
vise versa).  In any case, we would encourage further discussion on this point to obtain a 
better understanding of the problem. 

 
Figure 22. One-dimensional (energy budget model) calculation of path-
averaged Cn2 compared to measured A_LOT scintillometer data on  
17 December 2002. 
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3.3 Microclimate around buildings and forests 

Irregular wind flow patterns around the IOL and the water tower and the effects from 
wind shears and temperatures across the top of nearby forest canopies may also affect the 
A_LOT measured data.  To this end, computer models, like the program code reported in 
reference [33], may provide some meaningful results (even though pertinent canopy 
characterization and meteorological data along the optical path are not yet known or 
available).  Additionally, we can begin to formulate basic finite difference models with 
which to conduct numerical experiments to derive surface layer, wind flow patterns 
around single and multiple buildings.  Here, different building geometries embedded in 
the model grid (as well a representation of canopy drag forces) will affect the resultant 
vector wind fields.  Figure 23 shows an example model result for a five building array 
[34].  In the future, we can extend model results of this kind to three-dimensions.  Later 
on, we can include mechanisms (possibly) to account for heating, cooling, and moisture.  
Our main concern, however, is to maintain computationally efficient program codes that 
are also flexible with regard to modifications and debugging (thereby allowing 
application to different kinds of tests). 
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Figure 23.  Finite-difference model results for wind flow 
around multiple buildings [34]. 
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4. Summary and conclusions 

In this paper, we presented an overview of selected optical turbulence and meteorology 
data collected at the A_LOT facility at ARL.  We focused on the scintillometer (Cn2) 
data recorded at the IOL from December 2004 through June 2005.  We discussed eight 
case studies with regard to variations in daytime and nighttime turbulence intensity, wind 
speed, temperature, and relative humidity.  At the same time, we discussed some possible 
topographic and meteorological influences on the measured data and illustrated a few 
numerical model results aimed to predict these effects. 

In addition, we began to identify several viable research areas related to optical 
turbulence (Cn2) measurement, modeling, and analysis.  They are as follows: 

• Collect data to determine the kinds of correlations that exists between 
turbulence intensity and crosswind velocity. 

• Explore the relationship between turbulence intensity and cloud cover (and 
relative humidity). 

• Analyze and interpret ultrasonic micrometeorological sensor data for use in 
optical turbulence (Cn2) characterization and modeling research. 

• Investigate altitude dependence and computer model approximations of Cn2. 
• Examine diurnal patterns, e.g., local minima and maxima, in recorded Cn2 

data and in numerical model predictions. 
• Conduct statistical analyses of selected Cn2 data (e.g., for different seasons) to 

determine such quantities as monthly mean (daytime and nighttime). 
• Investigate models, which are at least two-dimensional, to determine optical 

turbulence (Cn2) in small finite increments along more complicated lines-of-
site, e.g., across non-uniform energy budgets. 

• Investigate algorithms to represent wind flow patters and microclimate around 
complex structures (e.g., forests, buildings, etc.) to determine their effects on 
Cn2 and electro-optical propagation. 

Current Army transformation programs are developing and integrating laser optics 
communication systems and sensors as a viable means to transmit large amounts of data, 
with limited interference, and at high data rates.  We anticipate that the research areas 
identified here will provide much useful information related to performance assessment 
and analysis of new Army systems. 
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